POLYMER-FILM COOLING ON A DRUM, TAKING INTO
ACCOUNT TEMPERATURE DEPENDENCE OF
HEAT CONDUCTION
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The cooling of a polymer film is solved by the Biot method, taking into account the temperature
dependence of the heat conduction. The solution obtained is numerically verified.

The production of plane films involves the technological operation of cooling a melt on the surface of a
thermostatted drum. The effect of the cooling kinetics on the kinetics of the structural changes occurring in
the film is significant, The cooling rate is determined by the film thickness and thermal conductivity. This
problem may be solved relatively easily for the case of constant thermal conductivity [1]. However, in
reality, the process of cooling on the drum occurs over a broad temperature range, i.e., in conditions such
that the temperature dependence of the thermal conductivity must be taken into account for the polymers.

This is a problem with internal nonlinearity. Great mathematical difficulty is encountered in solving
problems of this type, and so the number of problems which have been analytically solved is very small at
present, Such a problem was solved in [2] for a semiinfinite medium,

The aim of the present work is to obtain an analytical solution which ig convenient for use in calcula-
tions for the problem of film cooling on a drum, . taking into account the temperature dependence of the ther-
mal conductivity.

The film thickness is considerably less than the drum diameter, and therefore the drum curvature is
neglected. It is also assumed that there is ideal thermal contact between the film surface and the drum,

Suppose that the temperature dependence of the thermal conductivity may be approximated as follows [2]:
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where Ay, A, and B are parameters, The expression for the dimensionless temperature is written in the form
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where T, is the initial temperature of the film; T is the drum temperature, In this case, Eq. (1) takes the
form
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where

d = A(T,— Ty, b= (24T, - B)Te—Ty), d = AT? + BT, + 1.

The Biot method is used to solve this problem [3]. The problem is formulated as follows: a plate of
thickness I, with a thermal conductivity depending on the temperature as in Eq. (3) and a constant volume
specific heat pc, has an initial temperature 6 = 0 (Fig. 1), At time t = 0 (contact with the drum), one side of
the plate (at x = 0) instantaneously reaches a constant temperature § = 1; there is no heat transfer at the other
gide (x =1).
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Fig. 1. Dimensionless-tem-
perature distribution in the

first (1) and second (2) stages
of plate heating, x, m;qq, m.

The thermal process may be divided into two stages, In the first stage it is assumed that the tempera-
ture change occurs over a thickness x = qy less than the plate thickness I, and the temperature field is satis-
factorily approximated as follows:
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9 = (1 — —) . (4)
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This parabolic approximation is shown in Fig.1 (curve 1). The heat penetration over the thickness q; is
a generalized coordinate, defined as a function of the time.

The problem to be solved is one-dimensional, and so it is enough to consider the heat propagation through
a cylinder of unit cross-sectional area whose axis is perpendicular to the film surface. The thermal potential
is then

4y

V, = _;_. oc j 62dx = 0.1pcq,. (5)
0
The thermal displacement takes the form
dH
P =———- (6)

Taking into account that H = 0 at x = qi, it follows that
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The dissipative function takes the form
q,
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where z = 0.0181818a + 0,025573b + 0,0412698d.

The generalized thermal force Q is obtained by considering the virtual thermal displacement 6H =
pcdqy/3 when x = 0, The relation

Qibgy = OH 9)
may be written, and hence
1
Q= 5 e (10)
The Lagrange equation takes the form
oV, . aD,
Sk S = a)
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Fig. 2, Calculated tempera-
ture distribution in the film at
different times: 1) accurate
solution; 2) solution by the
Biot method, x, m;t, sec.

The solution of Eq. (11) for the initial condition gy = 0 when t = 0 gives the expression

Tt
Lh = ‘/ Tpc-;‘— . (12)
The first stage of the process ends when q is equal to I, at time t;:
15zpcl?
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In the second stage, corresponding fo times t > {;, the dimensionless temperature at the boundary x =
increases, In this stage of the process, the temperature field may alsc be wriiten as a parabolic dependence,

e=<1-qz)( I ~~l"—)2+qz, 1)

which is shown in Fig, 1 (curve 2), The temperature at the boundary x = I is a generalized coordinate. In
this case the thermal potential is

1 \
Vy = (m = 15 g | et (15)

The thermal displacement is obtained on integrating Eq. (16) with the temperature value from Eq. (14) and the
boundary condition H = 0 when x =, The dissipative function is found to be

D, = "2"” (ag2 + Bay + ), )

where .
o = 0,060542a; B = 0.078884a +- 0.098765b;

v = 0.078884a -+ 011716+ 0,2158734.
The numerical coefficients in the expressions for z, @, 8, and vy are as calculated on a Nairi-S computer,

The generalized force is obtained by considering the virtual thermal displacement 6H = (2/3)lpcdq,,

Q48q, = 6H, an
and hence
18y
Q= % lpc.
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Substituting Eqs. (15), (16), and (18) into the Lagrange equation
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yields an equation for q,,
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and integration of this, taking into account that q, = 0 when t = t;, gives the expression
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In the particular case when A = B = 0, plate cooling occurs in conditions of constant thermal conductivity,
and Eqgs. 12), (13), and (21) are considerably simplified, coming to correspond to the Biot solution [4].
When A = 0, the temperature dependence of the thermal conductivity is hyperbolic. The Biot method gives an
approximate solution of the given nonlinear problem. The error has been estimated by numerical verifica-
tion, involving the solution of the corresponding boundary-value problem by a difference method [3].

As an example of the calculation, consider the cooling of a polypropylene film for which the variation in
thermal conductivity is extremal over the temperature range 100-200°C [5]. The initial data are as follows:
volume specific heat pc = 2.23°10% J/m3* °K; T = 100°C; Ty = 200°C; I =10~ m. The coefficients in Eq. (1)
are obtained by least squares, and have the following numerical values: A, = 6,26°10 2 W/m - °K; A=—5.22 . 1075
deg™?; B =1.64-1072 deg"; the minus sign is taken before the unity in the denominator,

In solving the Fourier equation by the finite-difference method, the grid region had the following charac-
teristics; film-thickness step 107 m; time interval 107% sec. Investigating the convergence of the difference
scheme allows its error to be estimated; it did not exceed 0.3%. The calculations were performed on a Nairi-$S
computer,

The results of the numerical verification are shown in Fig, 2. By the Biot method, the first stage is
found to end after 0,75 sec. As follows from Fig. 2, the discrepancy of the results does not exceed &%, i.e.,
the solution obtained may be used for engineering calculations. Thus, the parabolic approximations of the
temperature field in Eqgs. (4) and (14) may be used as first approximations. The solution is obtained in the
form of algebraic equations, and its numerical realization is considerably simpler than the difference scheme
(the machine time is reduced by approximately a factor of 8).

NOTATION

A is the thermal conductivity of the material;

Ags A, B are the parameters in the temperature dependence of the thermal conductivity;

T is the temperature;

a,b, d are the parameters in the dependence of the thermal conductivity on the dimensionless tempera-
ture;

0 is the dimensionless temperature;

I is the film thickness;

p,c are the density and specific heat of film material;

t is the time;

‘X is the spatial coordinate;

a1, 42 are the generalized coordinates (respectively, the heating depth and the temperature at the
boundary);

v is the thermal potential;

H is the thermal displacement;

D is the dissipative function;

z,a B, Y are the parameters defined by the thermophysical properties and technological conditions;
Q is the generalized force;
t is the time of transition from first stage to second.
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RADIANT HEAT TRANSFER IN AN ABSORBENT MEDIUM

V. A, Kuznetsov UDC 536,3.33

A dependence is obtained for the radiation flux vector in the form of a series, A calculation
formula taking the anisotropy of the radiation field into account is proposed,

Various methods of calculating the radiant heat transfer in an absorbing (radiating) medium are based on
a closed and in principle solvable system of differential equations containing the radiant-heat-transfer energy
equation and the radiant-transfer equation [1]. For steady heat-transfer conditions, the energy equation may
be written in the following form:

divgy = 40 (e, T* — aT:), (8]
where T, is the radiant temperature, defined at each point of the medium by the expression
o= L S‘ Ido.
I
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The radiation flux vector q, may be found by vector integration over the spherical solid angle w = 47
of the total radiation intensity I, determined from the radiation-transfer equation [1, 2] as follows:

[=-%2B— — = (3)

The equilibrium radiation intensity B at each point of the volume of the medium is then calculated from
the well-known formula [2]

B = oT¥. )

As a rule, the total radiation intensity I is not the same for different directions I, and its dependence
on the solid angle w is not known a priori. Therefore, the integration of Eq, (3) in general form is carried
out only for the case of isotropic radiation [2].

It may be shown that on the basis of Eq. (3) calculational dependences may be obtained for the radiation
flux vector with an arbitrary configuration of the absorbing-medium volume and an anisotropic radiation field,
This involves differentiating repeatedly Eq. (3) with respect to the direction I, taking as constant the ratio be~
tween the intrinsic radiation and absorption coefficients of the medium €4/, and neglecting, for simplicity of
the equations, the derivatives of second and higher order of the absorption coefficient &, Note that on the
right-hand side of each of the resulting equations there is a derivative of the total radiation intensity I of
order one higher than that of the derivative of the total radiation intensity on the left-hand side of the equation,
Using this structural property of the formulas, the derivative di/d! may be eliminated from Eq. (3) and the
total radiation intensity written as a uniformly converging power series,

L ..
a wor  dl we0t2  dl? KMy o Ryt Al ’ (5)

where ®y = (1 + nda~Y/dly,
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